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ABSTRACT: The usual Euclidean distance may be generalized to extended objects
such as polymers or membranes. Here, this distance is used for the first time as a cost
function to align structures. We examined the alignment of extended strands to
idealized beta-hairpins of various sizes using several cost functions, including RMSD,
MRSD, and the minimal distance. We find that using minimal distance as a cost
function typically results in an aligned structure that is globally different than that
given by an RMSD-based alignment. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem
109: 3217–3228, 2009
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Introduction

I n a series of experiments starting in the late
1950s and culminating in a 1961 paper in the

Proceedings of the National Academy of Sciences
[1], Anfinsen and his colleagues showed that a pro-
tein such as bovine pancreatic ribonuclease would,
under oxidizing conditions, undergo slow but
spontaneous reshuffling of disulfide bonds from a
state with initially random cross-linked pairs, to a
state with correct disulfide pairing and full enzy-
matic activity. The spontaneous formation of cor-

rect disulfide pairs indicated that the amino acid
sequence itself was guiding the process toward
more thermodynamically favorable configurations,
and the so-called thermodynamic hypothesis in
protein folding was born.

This discovery underpinned the formalism that
developed decades later to understand protein
folding as a configurational diffusion process on an
energy landscape that through molecular evolution
had the overall topography of a rugged funnel
[2–9]. The initial random crosslinkings and subse-
quent slow exchange of disulfide bonds observed
by Anfinsen and coworkers argued against a mech-
anistic pathway picture, but there was nevertheless
a lag phase before the energy landscape picture
eventually took hold.Correspondence to: S. S. Plotkin; e-mail: steve@phas.ubc.ca
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Although important as a conceptual tool, real
predictive power was brought to bear by quantify-
ing the funnel notion to generate free energy sur-
faces as a function of a progress coordinate that
measured the degree to which a protein was folded
[10–12]. Soon thereafter, questions arose regarding
what coordinate(s) best represented folding
progress, or whether one could even find a simple
geometric coordinate that would represent kineti-
cally how folded a protein was. The kinetic prox-
imity of a given configuration was quantified un-
ambiguously as the probability a protein would
fold first before unfolding, given that it was initially
in that given configuration [13]. This idea had ear-
lier analogues in the Brownian analysis of escape
and recombination probabilities of an ionized elec-
tron [14].

Order Parameters in Protein Folding

The study of various order parameters that
might best represent progress in the folding reac-
tion has generated much interest [13, 15–29], with
questions focusing on what parameter(s) or princi-
ple component-like motions might best correlate
with splitting probability or probability of folding
before unfolding.

On the other hand, analyses using intuitive geo-
metric order parameters have been developed to
understand folding and are now commonly used.
These include the fraction of native contacts Q [21,
23, 30–34], which can be locally or globally defined,
root mean square deviation (RMSD) between struc-
tures [35–38], structural overlap parameter � [39–
41], Debye-Waller factors [42, 43], or fraction of
correct dihedral angles [34].

To find a simple geometrical order parameter
that quantifies progress to the folded structure
poses several challenges. These include an accurate
account of the effects of polymer noncrossing [44],
energetic and entropic heterogeneity in native driv-
ing forces [31, 45, 46], as well as non-native frustra-
tion and trapping [47–49]. Fortunately, it has been
borne out experimentally that wild type proteins
are sufficiently minimally frustrated that non-na-
tive interactions do not play a strong role in either
folding rate or mechanism, and native structure-
based models for folding rates and mechanisms
have enjoyed considerable success [50–55].

In condensed matter systems, useful order pa-
rameters have historically had intuitive geometrical
interpretations. Their definition did not require the

knowledge of a particular Hamiltonian (although
their temperature-dependence and time-evolution
were affected by the energy function in the system).
In chemical reactions, the distance between constit-
uents in reactant and product has played a ubiqui-
tous role in the construction of potential energy
surfaces [56]. Moreover, from the point of view of
stochastic escape and recombination, the distance
perfectly correlates with the commitment probabil-
ity for a freely diffusing particle between two ab-
sorbing boundaries.

Distance as an Order Parameter

The distance is easy to define for a point particle,
which we imagine to travel between two locations
A at rA and B at rB. It is the variational minimum of
the functional:

�
rA

rB

ds � �
0

T

dt�ṙ2 (1)

where ṙ � dr/dt, and the initial and final conditions,
or equivalently boundary conditions, are r(0) � rA

and r(T) � rB.
However, until recently [44, 57, 58], the distance

had not been formulated for higher dimensional
objects such as pairs of polymer configurations,
despite close parallels in string theory [59].

In this article, after briefly reviewing two com-
mon reaction coordinates, Q and RMSD, and the
two newer ones introduced and explored in [44, 57,
58], D and mean root squared distance (MRSD), we
will further explore structural alignments based on
D for idealized hairpins.

Some Problems With Commonly Used
Reaction Coordinates

Many reaction coordinates have been used to
describe the folding process, while still being
flawed in principle. These characterizations have
been largely successful because the majority of con-
formations during folding are well characterized by
changes in these parameters: Proteins undergo
some collapse concurrently with folding, lower
their internal energy, and adopt structures geomet-
rically similar to the native structure.
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Nevertheless, it is easy to point to simple exam-
ples of conformational transitions for which the
adoption of native structure does not correlate with
the change in commonly used order parameters.
Although these conformational pairs may not be
wholly representative of the total folding process,
they point to situations where folding to a given
structure would not be well-characterized by com-
monly used order parameters.

Figure 1 shows two structures A and B with dif-
ferent measures of structural similarity to a “native”
hairpin fragment N. These structures have different
measures of proximity depending on the coordinate
used to characterize them. If we use the fraction of
native contacts Q to describe native proximity1, struc-
ture A has a Q of QA � 1/3 while QB � 0, so by this
measure A is more native. If weuse the root mean square

deviation RMSD2, structure B is more native-like than A.
Moreover, structure B would have a higher probability
of folding before unfolding than A, that is, it has a larger
value of pFOLD [13], and so is closer kinetically to the
native structure. The longer the hairpin, the more likely
a slightly expanded structure is to fold, so the discrep-
ancy between Q and RMSD for these pairs of structures
becomes even larger.

In contrast to RMSD, Q also does not distinguish
between chiralities. Typically, the energy function for-
bids opposite chiralities; however, if the appropriate
chirality is not enforced in the backbone dihedral poten-
tials, mirror-image structures as in Figure 2 will be al-
lowable, and are indistinguishable according to Q [58].

Although the RMSD is often characterized as a
“distance” between structures, it is not equivalent
or even proportional to the sum of the straight-line
distances between the atoms or residues in the two
structures (Fig. 3). This quantity is in fact given by
the mean root squared distance (MRSD), defined
for two structures A and B as:

1
N �

n�1

N

�rAn � rBn� �
1
N�

n�1

N

��rAn � rBn�
2 (2)

The RMSD between two structures is always
greater than or equal to the MRSD between the
same structures, with MRSD � RMSD in only the
most trivial cases [58]. The RMSD is also less robust

1QAN � ��i�j�ij
A�ij

N�/��i�j�ij
N� counts pairs of residues within

some cut-off distance in both structure A and structure N. This
result is then normalized by the number of contacts in the native
structure.

2RMSD � �N�1�
i�1

N �rAi � rBi�
2 is a least-squares measure of

similarity between structures A and B. Typically, this quantity is
minimized given two structures and so can be thought of as a
“least squares fit.” The sum may be over all atoms, or simply all
residues in coarse-grained models.

FIGURE 1. Order parameters do not always correlate
with kinetic proximity. Structure A above is more na-
tive-like according to the fraction of native contacts,
while structure B is more native-like according to
RMSD, and is also closer kinetically to the native struc-
ture. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

FIGURE 2. Native structure of SH3 (right) and its mir-
ror image. Although dissimilar by RMSD, biologically
nonfunctional, and disallowed by true dihedral poten-
tials, this structure has a Q � 1, because native con-
tacts remain intact after mirroring transformations.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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to large fluctuations of select residues in structural
pairs [44].

MRSD has a simple intuitive physical meaning—
the MRSD between two structures gives the aver-
age distance each residue in one structure would
have to travel on a straight line to get to its coun-
terpart in the other structure (Fig. 3).

Polymer Noncrossing in Protein
Folding

The above interpretation of MRSD points to a
shortcoming of both MRSD and RMSD, which is
the importance of chain noncrossing constraints.
Consider the two curves depicted in Figure 4,
which differ by having opposite sense of under-
pass/overpass. When both curves are aligned by
minimizing MRSD or RMSD, the respective values
are almost zero. However, the physically relevant
distance for one conformation to transform to the
other is much larger, and must involve one arm of
the backbone circumventing the other as it moves

between conformations. The transformation that
minimizes the distance has been shown previously
to involve motions wherein one end of the polymer
doubles back upon itself until it reaches the under-
pass/overpass, where it appropriately crosses un-
der/over it, and then proceeds snake-like to extend
itself to the final position [44, 57]. We will not deal
further with the aspects of noncrossing in this arti-
cle, other than some description around equation
(12) below.

The Generalized Distance D

The distance between two points can be cast as a
variational problem, where the arclength of the
curve between two points is minimized [Eq. (1), see
Fig. 5]. The resultant Euler-Lagrange equations for
the distance between two points are:

d
dt��L

�ṙ� � 0
(3)

or

v̇̂ � 0

which implies straight line motion, because this
means that the direction of the velocity does not
change.

As mentioned in the introduction, the notion of
distance between two points can be generalized to
two curves or higher-dimensional objects in general

FIGURE 3. The MRSD is the average length of the
black like segments between corresponding residues of
the initial and final configuration. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]

FIGURE 4. The MRSD and RMSD between the two
curves are close to zero (the curves in this figure are
displaced for better viewing but should be imagined to
be superposed). However, because the curve cannot
pass through itself, to undergo the transformation, one
leg must undergo relatively large amplitude motions to
travel from one conformation to another. Alternatively
the loop must untwist and re-twist. This results in a
nonzero distance between the conformations by accu-
rate metrics, which can account for noncrossing. [Color
figure can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]

FIGURE 5. Distance between the two points A and B
is the minimum length of the curve connecting the two
points. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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[57]. As in the case of points, the distance between
two curves can be thought as a variational problem,
where one now minimizes the cumulative inte-
grated arclength between the two space curves:

D�ṙ� � �
0

L

ds�
0

T

dt�ṙ2. (4)

Here, r � r�s,t� � �x�s,t�,y�s,t�,z�s,t�� and ṙ � �r/�t.
The independent variables in this formulation are:
position along the contour of the polymer s and
elapsed “time” during the transformation t.

Intuitively, the double integral in Eq. (4) mea-
sures how much every part of the polymer moves
in going from one configuration to another (see Fig.
6 for a schematic).

The minimal distance problem Eq. (4) is not
equivalent to a simple soap-film problem (see Fig.
7). It also has a lower symmetry than the relativistic
world-sheet of a classical string [57], and so is in-
equivalent to that problem as well.

Minimizing Eq. (4) results in straight line motion
of all points along the curve. This is because Eq. (4)
models not an inextensible string but an effective
“rubber band,” which can expand and contract at
no cost to facilitate the minimal-distance transfor-
mation. If the polymer cannot arbitrarily stretch
and contract (a good approximation for real inex-
tensible polymers), the trajectories of the constitu-
ent segments deviate from straight lines.

The polymer is made inextensible by introducing
the constraint

���r
�s�

2

� �r	2 � 1, (5)

whereupon the function to be minimized becomes

D � �
0

L�
0

T

dsdt L�ṙ,r	� (6)

with effective Lagrangian:

L�s,t� � � ṙ � ���r	2 � 1� (7)

and Lagrange multiplier � 
 �(s, t), a function of
both s and t.

The new equations of motion obtained by ex-
tremizing the functional become:

v̇̂ � �� � �	t̂ (8)

where t̂ is the unit tangent vector, and � is the
curvature vector [57].

Numerical solutions may be more readily ob-
tained by discretizing the string as shown in Figure
8. This procedure is a particular example of the
method of lines, used to obtain solutions of partial
differential equations. After discretization, the
functional to be minimized becomes

D�ri,ṙi� � �
0

T

dt L�ri,ṙi�, (9)

where the effective Lagrangian L is:

FIGURE 7. The line segment A is displaced by d
along itself, to B. The soap film area Asoap between the
two segments is 0. But the distance DAB � L d. [Color
figure can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]

FIGURE 6. The distance DAB is the accumulation of
how much every part of the contour defining the space
curve moves in the transformation between two confor-
mations A and B.
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L�ri,ṙi� � �
i�1

N ��ṙi
2 �

�i,i�1

2 ��ri�1 � ri�
2 � b2��. (10)

Here, b is the segment length which we set to
unity. The distances we obtain are thus in units of
b2. The distance between space curves has the di-
mensions of area just as the distance between points
has dimensions of length. Upon discretization, the
PDE of the system becomes a set of N coupled
ODE’s, one for each residue:

v̇̂1 � �12r2/1 � 0 (11a)

v̇̂2 � �12r2/1 � �23r3/ 2 � 0 (11b)

···

v̇̂N � �N�1,NrN/�N�1� � 0. (11c)

where e.g. r2/1 � r2 � r1.
The solutions of the first and last (Nth) residues

or beads consist of either straight-line motion of the
bead, pure rotation of the link terminating on the
bead, or a stationary solution where the residue
remains at rest. Moreover, Weierstrass-Erdmann
corner conditions or transversality conditions de-
mand smooth curves for solutions by disallowing
discontinuities or cusps in the trajectories [58].

Given two conformations that serve as boundary
conditions on the equations of motion 11(a–c), sev-
eral solutions yielding slightly (nonextensively) dif-
ferent D’s can be constructed. It can be shown that

they are all local minima [58]. In Figure 9, two
solutions are shown. Figure 9(A) depicts the global
minimum transformation, and Figure 9(B) a sub-
minimal “excited-state” transformation. The solu-
tions both involve either rotations of the constituent
links or straight line motion of the constituent
beads. In Figure 9(A), rotation occurs away from
the straight-line conformation and results in a dis-
tance D � 45.793, while in 9B rotation occurs from
the curved conformation and results in D � 46.278.

The fact that a real polymer cannot cross itself
can be incorporated into the problem of finding the
minimal distance [44]. Noncrossing is manifested as
an inequality constraint [60–63], which appears in
Eq. (10) as a Lagrange parameter for each residue i,
multiplying the excluded volume constraint. To de-
scribe this, let the unit vector from the kth to the (k
� 1)th bead be êk � �rk�1 � rk�/b , then the vector to
position r(s) at contour length s on the chain (e.g.,
see Fig. 8) is

r�s� � b�
i�0

k�1

êi � �s � kb�êk

� rk � �s � kb�êk.

To constrain the motion of the beads so that the
chain cannot cross itself, we add the term

�i��
0

s

ds(�r�s� � ri���i
2)� (12)

to the summand of Eq. (10). Note that by discretiz-
ing the problem to find the motion of residues,

FIGURE 9. Minimal and subminimal transformations
between a straight line and a quarter circle (see text for
description). For the left transformation D � 45.793 and
for the right one D � 46.278, in units of the link-length
squared. [Color figure can be viewed in the online is-
sue, which is available at www.interscience.wiley.com.]

FIGURE 8. The lower curve is a discretized version of
the upper one. After discretization, the PDE for the up-
per curve becomes a set of N coupled ODE’s for the N
residues in the lower chain (A sample residue is marked
with a circle). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.
com.]
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there must be an asymmetry in the way that the
chain is treated: in a continuum treatment the term
in the integrand of (12) would be �r�s� � r�s	��. The
quantity �2 in (12) is an “excess parameter” which is
zero unless a residue is directly constrained (touch-
ing some part on the rest of the chain). If �i

2 � 0 the
problem of finding minimal distance is a “free”
problem for residue i, and the equations of motion
11(a–c) are unchanged. However, the corner condi-
tions mentioned above induce an implicit “knowl-
edge” of the sterically avoided boundary, so that
the motion of the residues are altered to travel most
directly to the steric surface constituting the con-
straint or obstacle. At this point, the residue is
constrained to be on the surface of the obstacle, and
the trajectory is defined accordingly. Subsequently,
the residue leaves the constraining surface, and the
problem becomes a free problem once again, trav-
eling most directly to the final conformation [44].

In the above treatment, the chain has zero thick-
ness. A tube thickness � can be straightforwardly
incorporated into the treatment by letting r(s)
r�s�3 r�s� � �ê� in Eq. (12), and then integrating
over the surface of the cylinders which compose the
resulting piece-wise tube.

Another modification that can be made to the
Lagrangian is one involving curvature constraints.
In the current treatment, the angle between two
consecutive links of the chain can have any value,
whereas in real protein chains angles defined by
bonds between atoms or residues are restricted. We
will not discuss these aspects in this manuscript.

The Minimal Distance Between
Protein Fragments

In Ref. 44, protein fragments such as an alpha helix
and beta hairpin were considered for purposes of
calculating the minimal distance. An extended strand
was aligned to the respective structures by minimiz-
ing either RMSD or MRSD, and the distance D was
subsequently calculated for the aligned structural
pairs. Both real and idealized protein fragments were
considered. Most pairs of structures had smaller dis-
tance minimal pathways when aligned using MRSD
as the cost function. In some cases, however, the
smaller distance minimal pathway was obtained
when the boundary conformations were aligned us-
ing RMSD as the cost function.

For example, the straight line conformation in
Figure 10 was aligned to an idealized 	-hairpin
structure also shown in that figure. The alignment

was performed by both minimizing the MRSD be-
tween the structures [Fig. 10(A)], and by minimiz-
ing RMSD between the structures [Fig. 10(B)]. In
each instance, the minimal distance D between the
structural pairs was calculated after alignment. The
resulting aligned straight-line structures have sig-
nificantly different position/orientation depending
which cost function was used, MRSD or RMSD: the
MRSD between the two straight-line structures is in
fact larger than the MRSD between each and the
hairpin structure [44].

Both transformations are minimal transforma-
tions but are subject to different boundary condi-
tions and thus yield different pathways and D’s.
The question remains as to how to align the struc-
tures to obtain the minimum of all minimal trans-
formations, that is, the minimum minimal distance
D. To calculate this quantity, D itself must be used
as the cost function for alignment.3

In this article, we align structures using D as a
cost function to obtain for the first time the mini-
mum of all minimal transformations. The structures

3In the limit of a large number of residues (N), the distance
converges to the N times the MRSD: D3 N � MRSD, so for long
chains, MRSD can be considered a first step toward optimal
alignment. However, ideally, one wants to align the two struc-
tures using D itself as a cost function.

FIGURE 10. (color) D minimizing transformations for
MRSD aligned (yellow) and RMSD (cyan) aligned hair-
pins. Intermediate state is shown in gray. The distances
for each transformation, in units of link length squared,
are 3.20 for MRSD-aligned and 3.22 for RMSD-aligned
structures. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.
com.]
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that we consider are idealized straight-line seg-
ments with varying number of links, which are then
aligned to idealized beta hairpins using D as a cost
function. The alignment and resulting distance D
are compared with the alignments and distances of
RMSD and MRSD. This is a first step toward align-
ing more complex structures using D as a cost
function. We will also see that there exist high order
approximations which capture much of the proper-
ties of a true D alignment. Applying these approx-
imate metrics to align structures such as a full pro-
tein is a topic for future research.

Structural Alignment of Protein
Fragments Using the Distance D

In principle, minimal pathways can be computed
for any initial and final configurations, just as RMSD
can be computed between any two configurations.
However, it is of special significance to anneal the
configurations allowing translations and rotations,
until the minimal distance transformation is achieved
(i.e. the minimum of minimal distance transforma-
tions). This is analogous to the usual procedure of
using RMSD or MRSD as a cost function between two
structures and minimizing with respect to transla-
tions and rotations. Although the minimization pro-
cedure is particularly straightforward for RMSD and
involves the inversion of a matrix, the minimization
using the distance D as a cost function involves a
simplex or conjugate gradient minimization and so is
more computationally intensive.

In short, the boundary conformations are al-
lowed to translate and rotate in 3D space. Their
position and orientation are modified to produce a
pathway with minimal length, when compared
with all other minimal pathways that can be ob-
tained by positioning and orienting the same two
structures in 3D space.

Method and Results

For the purpose of generating accurate initial
guesses for the minimal distance aligned structure,
we introduce the following hierarchy:

D0 � N 
 MRSD (13a)

D1 � �
i�1

N�1

D�li
� A�,li

�B�� (13b)

D2 � �
i�1

��N�1�/ 2

D�li
� A��,li

�B��� � D1
�end link)

(13c)

···

DN � D. (13d)

In this hierarchy, the D� has the following inter-
pretation: D0 is the cumulative distance between
the sets of points comprising the residue locations
of conformations A and B, D1 is the cumulative
distance between the sets of single links, li, com-
prising configurations A and B, D2 is the cumula-
tive distance between the sets of double links, {li},
comprising configurations A and B plus any single-
link remainder if one exists, and so on. That is, at
level � the polymer chain is divided up into sub-
segments each of link-length �, plus one segment
constituting the remainder. When � � N, the chain
as a whole is considered, which is the true distance
D. This procedure is also illustrated schematically
adjacent to each equation above.

We observed that D1 was a good approximation
to the total D between two chains, was much easier
in practice to calculate, and could be automated in
a robust way. For these reasons, we used it to
generate initial guesses for minimal distance
aligned structures. After the initial alignment using
D1 the chains were further aligned using the full
distance D. At this stage, the general form of the
transformation is established and the computation
can be automated. We used a Nelder-Mead simplex
method in our algorithm to find the minimal dis-
tance alignment.

Figure 11 shows the aligned structures using
RMSD, MRSD, D1, and D, for increasing numbers
of links. Several points can be observed. For the
smallest number of links (three), MRSD, D1, and D
all give the same alignment [Fig. 11(a)], but differ
from RMSD. For five or more links, the MRSD- and
D1 aligned structures break symmetry by choosing
particular diagonal direction, while the D-aligned
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FIGURE 11. Alignments with different cost functions. The Hairpin is shown in red. D alignment in green, D1 in blue,
MRSD in yellow, and RMSD in cyan.
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structure retains horizontal symmetry but shifts in
position along the hairpin [Fig. 11(b)]. Interestingly,
for seven links the D1-aligned structure becomes
horizontal again and nearly identical with the D-
aligned structure, while the MRSD-aligned struc-
ture remains diagonal. The deviation from MRSD
and D is a finite-size effect [57], so we know that the
two alignments must eventually converge as N is
increased. At nine links [Fig. 11(d)], the D1-align-
ment breaks symmetry again, in the same fashion
as MRSD, while the D-alignment remains similar to
RMSD. By 11 links [Fig. 11(e)], the D-aligned struc-
ture has broken symmetry as well, with a larger
angle to the horizontal than D1 but smaller angle
than MRSD. This situation persists for 13 links [Fig.
11(f)]. As N is further increased beyond 15 links
[Fig. 11(g)], the D1 and MRSD aligned structures
quickly converge, while the angle with respect to
the horizontal of the D-aligned structure continues
to lag behind that of either MRSD and D1 aligned
structures, converging slowly as N continues to
increase [Figs. 11(g)–(j)]. The RMSD-aligned struc-
ture remains horizontal for all hairpin lengths.

Average lengths of 	-hairpins in databases
constructed from the PDB are about 17 residues
[64], most consistent with Figure 11(h). From this
figure, we see that hairpins of this length have a
globally different structural alignment with ex-
tended structures depending on whether D or
RMSD is used.

Table I and Figure 12 summarize the results for
the minimal distance transformations from the

aligned structures. Table I gives the numerical
value of the distance D for each aligned structure,
aligned using the various cost functions listed: D,
D1, MRSD, and RMSD. Note that the distance D is
always minimized for the distance-aligned struc-
ture, and tends to increase as one considers the D1,
MRSD and then RMSD-aligned structures for a
given number of links.

For comparison, in Table II the corresponding

TABLE I ______________________________________
D/N (in units of link length squared) between the
aligned structures in Figure 11.

N

Alignment cost function

D D1 MRSD RMSD

4 0.785 0.785 0.785 0.822
6 1.391 1.404 1.473 1.419
8 1.974 1.975 2.085 2.014
10 2.559 2.562 2.654 2.615
12 3.127 3.155 3.197 3.216
14 3.674 3.730 3.726 3.817
16 4.207 4.240 4.247 4.418
18 4.732 4.760 4.762 5.019
20 5.252 5.271 5.272 5.620
22 5.767 5.780 5.783 6.221

Each of the four columns represents the structural pairs for
the cost function labeled. For example, column 3 gives D/N
for structural pairs in figure 11 aligned using MRSD.

FIGURE 12. Scale invariant distance resulting from
different alignments with different cost functions, for
alignment of a straight line segment to an idealized
	-hairpin.

TABLE II _____________________________________
MRSD (in units of link length) between the aligned
structures in Figure 11 using the four cost functions
we considered.

N

Alignment cost function

D D1 MRSD RMSD

4 0.707 0.707 0.707 0.809
6 1.375 1.393 1.337 1.412
8 1.961 1.960 1.899 2.008
10 2.547 2.545 2.436 2.610
12 3.062 3.108 2.959 3.211
14 3.575 3.675 3.475 3.813
16 4.081 4.004 3.987 4.414
18 4.585 4.506 4.495 5.015
20 5.088 5.008 5.002 5.616
22 5.591 5.511 5.508 6.218

For example, column 1 gives MRSD for structural pairs in
figure 11 aligned using the distance D.
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values of MRSD are given for the aligned struc-
tures using each cost function. Note in each table
that as N 3 �, D tends to converge to MRSD.

The distance traveled per residue, in units of link
length is D/Nb. Dividing this measure by the chain
length (N � 1)b gives a scale-invariant measure of
the distance: D̃ � D/�N�N � 1�b2�. This quantity is
plotted in Figure 12. We can see from the plot that
the D1-aligned structure generally gives a good ap-
proximation to the true D-aligned structure. More-
over, MRSD, D1 and D all converge to the same
value while RMSD converges to a dissimilar value.

Conclusions and Discussion

In this article, we reviewed the concept of the
generalized distance D, and then used it as a cost
function to align unfolded idealized strands of var-
ious sizes to their corresponding idealized 	-hair-
pin structures. This is the first time that the true
Euclidean distance has been used as a cost function
for structural alignment. The distance D for the
minimal transformation between aligned structural
pairs was compared for various alignment cost
functions: RMSD, MRSD, D1, and D itself. D1 is the
distance between conformational pairs if the chain
were decimated to single links and the distance of
all single-link transformations was summed.

We found that D1-aligned structures generally
gave a distance that was close to the true D-aligned
structure, and in this sense was a good approxima-
tion. However, the aligned structures were notice-
ably different depending on the cost function, for
the finite values of N that we studied. Our largest
value of N was 22 residues, while the average
length of 	-hairpins is about 17 residues. For these
average hairpin lengths, the minimal D aligned
structure is globally different from the RMSD struc-
ture. Whether this discrepancy is generally true for
larger structures or whole proteins remains to be
determined, but we feel it is likely, in particular
when aligning extended structures to proteins. It is
not yet clear at this point whether alignment using
distance will yield more accurate predictions for
such problems as protein structure prediction or ab
initio drug design. What is clear is that the best-
aligned structures using a reasonable alignment
metric such as the true distance give very different
results than RMSD, even for relatively simple struc-
tures such as the 	-hairpin.
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